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‘ THE BASIC CONCEPT .

A dynamical system =

3= (T’ W, %)

T C R, the time-axis (= the relevant time instances),

W, the signal space (= where the variables take on their values),

B C W' : the behavior

(= the admissible trajectories).
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‘ZZ(T,W,%)I \

For a trajectory w : T — W, we thus have:

w € 5 : the model the trajectory w,
w ¢ B : the model forbids the trajectory w.

Usually, T = R, or [0, c0) (in continuous-time systems),

or Z, or N (in discrete-time systems).

Usually, W C R¥ (in lumped systems);

a function space
(in distributed systems, with time a distinguished variable);
or a finite set (in DES).

Emphasistoday: T =R, W = R",

\_

8 — solutions of system of linear constant coefficient ODE’S./
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/ ‘ EXAMPLES '

1. Planetary orbits

T = R (time),
W = R3 (position),
83 — planetary orbits = Kepler’s laws:

(period)?

@axis)s constant.

ellipses, = areas in = time,

\ Planetary orbits /
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2. Input | output systems

2

F(y(t), - y( ),dtz

y(t),..

= Fau(t), pu(t), o il

T =R (time),
W = U X Y (input X output signal spaces),
8 — all input / output pairs.

N

1)

u(t),...
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3. Codes
A = the code alphabet, say, A — [, [ a finite field,

I = an index set, say,
[ =(1,--- ,n) in block codes,
I = N or Z in convolutional codes,

¢ C Al = the code; yields the system X = (I, A, €).

Redundancy structure, error correction possibilities, etc., are visible
in the code behavior €.
It is the central object of study.

Encoder& decoder can be put (temporarily) into the background.

o /
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4. Formal languages

A = a (finite) alphabet,

£ C A* = the language = all ‘legal’ ‘words’ ajas---

yields the system X = (N, A, £).
A* = all finite strings with symbols from A.

Examples: All words appearing in the van Dale
All IATEX documents

\_




/ ‘ LATENT VARIABLE SYSTEMS ' \

First principles models  ~~»

A dynamical system with latent variables = X7, = (T, W, L, Bun)

T C R, the time-axis (= the set of relevant time instances).
W, the signal space (= the variables that the model aims at).

IL, the latent variable space (= the auxiliary modeling variables).

Bean € (W x L)' : the full behavior

(= the pairs (w, ) : T — W X L that the model declares

\ possible). /
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THE MANIFEST BEHAVIOR '

Call the elements of W [‘manifest’ variablesj .

those of L [‘latent’ variables] .

The latent variable system X; = (T, W, L, 2B¢,1;) induces
the manifest system 3 = (T, W, B) with manifest behavior

B={w:T—>W]|3 £: T — L suchthat (w,l) € B}

In convenient equations for 23, the latent variables are

\_
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‘ EXAMPLES '

1. RLC - circuit

____________ |

I I

1 7\ : Rce :

+ |

Vv | |

_ | |

R - C |
environment ! |
I I

| |

system

RLC - circuit

! Model the relation between V and I !!
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VRC+ T VL

D

;c\_T%RiL

The circuit graph

I<+
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/ ‘ SYSTEM EQUATIONS I \

Introduce the following additional variables:
the voltage across and the current in each branch:
VRC’ IRca Ve, Ic, VRL ’ IRL s Vi, IL.
Constitutive equations (CE):

d d
Vero= Rclr., Vr,= RrIR,, CEVC = Ic, LEIL =V

Kirchhoff’s voltage laws (KVL):

V=Vg.+Vec, V=V +Vgr,, VR + Ve =V + Vg,

Kirchhoff’s current laws (KCL):

\ I =1Ir,+ I, Ir, =1Icy, I = Ir,, Ic +1Ir, =1

/
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Formalization as a latent variable system:

T =R,
W = R? - manifest variables: the port voltage and current,
L = R® -latent variables: the branch voltages and currents,
Bean = all functions (V, I,Ve ., In., Vo, Icy Ve, s Ir,, Vi, I1)
that satisfy the CE’s, KCL, and KVL,
B = the functions (V, I') that satisfy the ‘eliminated’ port
equations.

N
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/ ‘ RELATION BETWEEN V and I ' \

After some calculations we obtain the port equations:

L
Casel: CRc £ —

Ry
( 1 a+2%er d-I—CR L4y
L
—(1—|—CRC—)( —I———)RC
Ry d

L
Case2: CRc = —.
L

(— + CRC—)V =1+ CRC—)RCI
Ry

\These are the exact relations between V and 1 ! /

16
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2. Input /state | output systems

La(t) = f(x(t),u(®)); y(t) = h(z(t),u(t)),
T=RW=UXY,L=X,
Bean = all (u,y,z) : R — U X Y X X that satisfy these equations,
8 — all (input / output)-pairs.

N /
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. Interconnected systems = ’First principles’ models

~

Interconnected system

External variables ~~» manifest;

Qlternal variables ~» latent. /
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4. Grammars

A convenient way to specify a formal language, whose essence is
captured by latent variables, is through grammars.

19
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/ ‘ THE NOTION OF STATE '

The latent variable system

2X — (Ta Wa Xa %full)

is said to be a [state system] if

(w1, 1), (W2, x2) € Beun and x1(to) = x2(to)
imply

(w1, 1) A (wa, x2) € Beun-

{\ denotes concatenation at tg, defined as
(0]

.fl (t) for t < t()

t) :=
fl{;h( ) f2(t) for t > 2o

\_
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In pictures:
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time

Concatenation
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This definition is the implementation of the idea:

The state at time t, x(t), contains all the information
(about (w, x)!) that is relevant for the future behavior.

The state = the memory (nothing ‘minimal’ implied!).

The past and the future are ‘independent’,
conditioned on (given) the present state.

24
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Examples of state systems:

1. Discrete-time systems.

A latent variable system described by a difference equation that
is first order in the latent variable x, and zero-th order in the

manifest variable w:

F(x(t + 1), (), w(t),t) = 0.

25
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2. Continuous-time systems.

A latent variable system described by a differential equation that is
first order in the latent variable x, and zero-th order in the manifest
variable w:

F(Sa(0),2(0), w(t),8) = 0.

In particular, the ubiquitous

%m(t) = F(2(t), u(t)), y(t) = h(x(t), u(t));

w(t) = (u(t), y(t))-

26
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3. Automata.

4. Trellis diagrams.

d
P =hH(Y), p= %1%

1) = the ‘wave function’;
p(x,t) = the ‘probability’ density of the particle’s position.

N /
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For discrete time state systems ~»

Theorem: The ‘complete’ latent variable system

YXx = (Za Wa Xa %full)

is a state system B ra11 admits a representation as
a difference equation that is first order in the latent variable x,
and zero-th order in the manifest variable w:

F(z(t+1),z(t),w(t),t) = 0.

28



‘LINEAR DIFFERENTIAL SYSTEMS I
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We now introduce the systems

> = (R, R¥, B)

that are

1. [ linear ], meaning
(w1, we € B)A (o, 8 € R)) = (aw; + Bwy € B);

2. [ time-invariant ], meaning
((w € B) A (t € R)) = (ctw € B)),
where ot denotes the backwards t—shift;

3. ( differential ] , meaning
8 consists of the solutions of a system of differential equations.

N /
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In vector/matrix notation:

W1 Rl1{,1 Rl1{,2 Rli,w
o wao, R R§,1 Rg’z RE’W
- ’ k - ) ) °
K K K
i W i Rg,l Rg,2 Rg,W_
Yields
Row + R d + + R - 0
_ c o N w =
0T M dto ’

with Ro, Rl,' o ,Rn c R&XV,

o
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ombined with the polynomial matrix

R(€) = Ro + R.& +

we obtain the short notation

Including latent variables ~-»

with R, M € R***[¢].

o

oo+ RE,
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Gxamplesz \

L
1. RLC-circuit: Casel: CRc # —
RL

Then the relation between V and I is

( € 411+ 2cRe + CRoE v
Ry R, T Cat “Ry d 2
L
— (1 -+ CRc—)( -+ ——)RC
Ry d
v
Wehavew = 2; g=1; w = s R(E) =
I
[(RC+(1+ )CRcé-i-C'RcR & | —1—(CRC+RL—L)€—(CRCRL—L)€2]
[ RS | =11+ [1432 | —CRc—+ 1€+ [CRo# | —CRc & ] £

N Y
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2. Linear systems:

e The ubiquitous

P(H)y=Q(FHu, w= (u,y)

with P, Q € R***[¢], det(P) # 0 and, perhaps, P~ Q proper.

e The ubiquitous

2y = Az + Bu; y=Cz+ Du, w = (u,y).

e The descriptor systems

d
—F F Gw = 0.
It r—+ rae + Gw

o /
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For simplicity of exposition, we assume smooth solutions.

Whence, R(%)w = 0 defines the system > = (R, RY, 23) with

B = {w € €°(R,R") | R(%)w = 0}.

35
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NOTATION '

£° : all such systems (with any - finite - number of variables)
£¥ : with w variables

B = ker(R( % )

B € £¥ (no ambiguity regarding T, W)

The theory (representations, elimination, controllability,
observability, algorithms, control, etc.) of £° is very complete.

\_ /
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STATE REPRESENTATIONS I
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‘ DESCRIPTOR SYSTEMS '

Theorem: The latent variable system (R, RY, R™, B¢,) with
Bral € L7 is a state system B¢, admits
a kernel representation that is first order in the latent variable =,

and zero-th order in the manifest variable w.

In other words, iff there exist matrices F, F, G € R***® such that
this kernel representation takes the form of a descriptor system:

d
FE— F Gw = 0.
dta:—l— r + Gw

\_
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MINIMALITY of STATE REPRESENTATIONS

We can consider two types of minimality:

1. Minimality of the number of equations
2. Minimality of the number of state variables

We discuss mainly the second one.

Definition: The state system (R, R¥, R™, B¢;1) with B, € L9
is said to be | state-minimal ] if, whenever (R, R", R, Be ) With

;'ull - £v+1° js another state system with the same manifest
behavior, there holds

\_

n <n'.
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K)ne more definition... \

B € LY is said to be if, for all wg € R", there exists w € ‘B
such that w(0) =wg. The state system (R, R*, R™, B¢,;;) with
Beann € LV is said to be [state-trim ] if, for all xog € R", there
exists (w, x) € By, such that £(0) = xg.

Theorem:
The state system (R, RY, R™, B¢1) with By € L7 s
state-minimal iff it is state trim and the state x is ‘observable’ from

w.

Observability :<< « can be deduced from w.
Le., 3 X € R**¥[£] such that (w, x) € By < « = X(%)w.

\State-minimality &< the combination of trimness and observability./
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Notes:

1. State isomorphism theorem. Assume (R, R", R™, B¢, ) and
(R, RY, R™, B 1), Beun, Biyy € LT both state-minimal,
same manifest behavior

= there exists a nonsingular S € R™*"™ such that

((w, z) € Bgun and (w, ") € By

u

n) < (z' = Sz).

2. The manifest behavior is controllable iff a state-minimal state
representation is state-controllable (defined in the obvious
way).

3. d algorithms on E, F, G in a descriptor representation to verify
its state-minimality, its equation minimality, both combined.

o /
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4. E%m + Fxr+Gw =20 andE'%w' + F'x’ + G'w = 0 are
two minimal (state- and equation-minimal) representations of the

same manifest behavior iff there exist nonsingular matrices
T,S € R®***® such that

E' = TES,F' = TES,G' = TG.

All ‘classical’ results remain valid, except, (fortunately!)
the celebrated (non-)equivalence:
state-minimality < (state-observability + state-controllability).

Non-controllable systems are very ‘real’ and they allow
state-minimal (non-controllable) state representation.

N /
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STATE CONSTRUCTION I
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Given a representation of the manifest behavior,

find a (state-minimal) state representation for it.

Most logical : latent variable representation ~» state representation.
However, it is most convenient to discuss kernel representations first.

Let X (&) € R**¥[£]. The map X(%) is called a [ state map ] for
B € £V if the full behavior

d
Beal = {(w,a:) | w € *Band x = X(a)’w}

satisfies the axiom of state. Minimal state map: obvious.

In a state-minimal representation, x is always determined by a state

\map (because of observability), whence state maps exist. /
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/ CONSTRUCTION of STATE MAPS '

Define the ‘shift-and-cut’ operator o on R[] as follows:
o:po+pi€+-+ P18+ ppt”

— D1 + P2€ ‘|‘ **e + pn—lgn_2 + pnén_l

Extend-able in the obvious term-by-term way to R®**® [£].

Repeated use of the cut-and-shift on P € R**® yields the

‘stack’ operator X p , defined by

S |

o(P)

o*(P)

a.degree(P) (P)

~
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/ FROM KERNEL REPRESENTATION to STATE MAP \

There is a construction (elegant in its simplicity) of a state map in
terms of the cut-and-shift and stack operators!

Theorem: Let R(%)fw = 0 be a kernel representation of 28 € £V.
Then X g ( %) is a state map for 3.

The resulting state representation

d d
R(—)w =0: = Yp(—)w
(dt) ’ * R(dt)

need not be minimal. It is trivially state-observable, but it may not be
state-trim. Using Grobner basis techniques it can be trimmed,
%ading to a minimal state representation. /
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/ SINGLE INPUT - SINGLE OUTPUT SYSTEMS \

Apply this to

p( Iy = a()u

with

p() = po+pi€+- + P18+ P P #£O
q(€) = g+ qé+- -+ q 1+ g8

The cut-and-shift and stack operators yield the polynomial matrix

T P1t P 1€ T PN = =1 €T T €T ]
P2t tPa 180 +p€" T —g2— 1€~
X(§) =
Pa—1+Paé —Qn—1—qn§

_ - . .

47
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~

It follows that x = X (%) is a state map, in fact, a state minimal one,

even if the system is not controllable, i.e., if p and g have a common

factor.

Minimal state map = basis for span of the rows of X modulo R.

Number the rows of X in reverse order. A small calculation shows

that this choice of the state variables leads to the so-called

[ observer canonical form] , the i/s/o representation

A =

_pO/pn
—P1 /pn

10 ---
01 -

00
00

| —Pn—1/P 00 .- 01

[1/pn00--00],

Y

[ qo—P0qn/DPn
Q1—p1Qn/pn
B =
| Gn—1—P1—1Gn/Pn |
D= [a/p].

48



Gnother immediate choice is to pick linear combinations of the rows\
of X so that the resulting state map matrix takes the form

- 1 e
& *
X&) = : :
gn—2 *

| ¢n *

The x’s are obtained from the polynomial b(£) € R[£] defined by the
equation

p(£)b(E7") = q(§) (modulo £ R[ET]).

Then
1 bo =
£ b1+bo&

X' =1 : :
g2 by,_2+b,_g&+-+bo€" 2
L ¢t by_1+b,_2&+--+bo&" '

49
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This leads to the [ observable canonical form ] , the i/s/o

representation
- 0 1 © 0 - by -
0o 0 1 0 b
A= | i |, B=| : |,
0 0 0 . 1 b.
_Po _ P1 _ P2 _pn—l n—1
L Pn DPn Pn Pn - L bn _
C = [10..00], D= [bo].

Image representations + state construction ~-»

[ controller canonical form ] and [ controllable canonical form ] .

N
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Notes:

e Basic idea of algorithms:
from latent variable representation directly to state model.

This complements the existent algorithms
transfer function — i/ s/ o representation;
impulse response — i/ s/ o representation.

e Our state construction is easily extended to state / input
construction.

N
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/ e Examples of useful special (minimal) state representations:

i/s/o representation:

d
am:fl.:l:—|—B’u,, y=CiB+Dan= (u9y)’

output nulling representation:

d
Ew:Am—l—Bw, 0 =Cx + Dw,

driving variable representation:

d
aa}:Aw—l—Bv, w = Cx + Dv.

e Immediately deduced from descriptor representation:

d
E— F Gw = 0.
dta:—l— x + Gw

~
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‘ BALANCED REALIZATIONS I

53




-

‘ FROM KERNEL REPR. TO BALANCED REAL. .

For simplicity, we discuss only single input - single output systems

p( 5y = a( 5 yu

assumed controllable, i.e., with p, g co-prime,
n = degree(p) > degree(q),
and stable, i.e., p Hurwitz.

Problem: Pass from p, g to a balanced state representation

N

using polynomial algebra.

~

/
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Computation of the controllability and observability Gramians
(two-variable polynomials):

r(¢)p(n) — p(—¢)p(—n)

C(¢n) = Cr

q(¢)g(n) — z(¢)p(n) — p(¢)x(n)
¢+m ’

where x € R[£] is given by the Bezout equation

z(—&)p(§) + p(—&)=x(§) = q(—£)q(§).

O,n) =

N
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/Factor C, O as

C(¢,mn) = ;051%(0%(77),
0(Cim) = X_ja )
withoy > o3 > ---0, > 0. S(:lve fork = 1,...,n, the equations
Ea(€) = Z e (€) + bp(£),
q(§) = k,zn_:l cw T (§) + dp(§).

Then the matrices with entries ay y/, by, cx, d define a balanced

Qealization. The balanced reduction is obvious from here.

/
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Open Problem:

Algorithm

(pa Q) > (pbalred s dbalred ) .

AAK version of this: cfr. Fuhrmann’s book.

Goal: algorithms passing from image, latent variable representation

to balanced realization.

o /
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‘ STATE for PDE’SI
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BEHAVIORS of n-D SYSTEMS

A system :=

T = the set of independent variables

time, space, time and space

W = the set of dependent variables (= where the variables take on

their values), signal space, space of field variables, . . .

the behavior | = the admissible trajectories

o /
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/ ‘ZZ(T,W,%)I

for a trajectory w : T — W, we thus have:

w € %5 : the model the trajectory w,
w & B : the model forbids the trajectory w.

In this section, T = R", (‘n-D systems’)
W = R,
w: R* — R, (wl(wla Tt mn)a e 9ww(w19 Tt mn))a
often, n = 4, independent variables (¢, x, y, z),
'8 — solutions of a system of constant coefficient
linear PDE’s.

Q,inear distributed differential systems’.
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‘ n-D LINEAR DIFFERENTIAL SYSTEMS .

T = R™,
W = R¥,
'8 — the solutions of a linear constant coefficient system of PDE’s.
Let R € R**¥[&1,+ - ,&4], and consider
w
Define
w

¢>°(R™, R") mainly for convenience.

o /
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Example: Maxwell’s equations

s 1
V. = —P
€0
_ 0 -
VXE = ——B,
ot
V-B = 0,
2 — 1—.» 8—»
c’VxB = —j3+ —FE
€0 ot

T = R x R? (time and space),
W = (E ) B ’ .; ' P)

(electric field, magnetic field, current density, charge density),
W =R3 xR x R? x R,
'8 = set of solutions to these PDE’s.
Note: 10 variables, 8 equations! = 1 free variables.

/
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Maxwell’s equation for the electrical variables (with B ’eliminated’):

—~ 1
V-E = —p,
€0
_ - .
€OEV'E+V'] == O,
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‘ MARKOVIAN n-D SYSTEMS '

What is the notion of state for such systems?
What does ‘Markov’ mean?

B € LY is said to be [ Markovian ] if for all nice partitions of
R™ = 8_1 USoUS; there holds:

wi,we €B and Wy, = W2y
p—
w1 AN Wo € 5.
So

( é\ := ’concatenation’ at Sp).
(0]

o /
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A nice partition
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The first solution
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The second solution
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Rn

The concatenated solution
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CONJECTURE '

B ¢ £ is Markovian if and only if

8 8
B = ker(R(——, - - -

82131 ’8—21311))’

with R first order, i.e.,

R(&1,:+ y&) = Ro + R1,161 + R1282 + -+ + Ry 1&n.

“If”’-part is clear; “only if”’-part is the problem.

Example: Maxwell’s equations, B induces state representation of

\electrical behavior. Not observable, thou.
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CONCLUDING REMARKS '

A system = a manifest behavior
First principles models ~» systems with latent variables

State systems: latent variable systems in which the state ’splits’
the past and the future

State construction: for linear differential systems via
cut-and-shift map and Grobner basis algorithms

Balanced reduction via polynomial algebra

Conjecture for PDE’s: Markovian < first order

70




‘ Thank you! I




