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BEHAVIORAL SYSTEMS
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THE BASIC CONCEPT

A dynamical system =

, the time-axis (= the relevant time instances),

, the signal space (= where the variables take on their values),

: the behavior (= the admissible trajectories).
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For a trajectory we thus have:

: the model allows the trajectory
: the model forbids the trajectory

Usually, , or (in continuous-time systems),
or or (in discrete-time systems).

Usually, (in lumped systems);
a function space
(in distributed systems, with time a distinguished variable);
or a finite set (in DES).

Emphasis today:
solutions of system of linear constant coefficient ODE’s.
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EXAMPLES

1. Planetary orbits

(time),
(position),

planetary orbits Kepler’s laws:
ellipses, = areas in = time, periodaxis constant.

Sun

Planet

Planetary orbits
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2. Input / output systems

(time),
(input output signal spaces),

all input / output pairs.
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3. Codes

the code alphabet, say, a finite field,

an index set, say,
in block codes,

or in convolutional codes,

the code; yields the system

Redundancy structure, error correction possibilities, etc., are visible
in the code behavior .

It is the central object of study.
Encoder& decoder can be put (temporarily) into the background.
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4. Formal languages

a (finite) alphabet,

the language = all ‘legal’ ‘words’
yields the system

all finite strings with symbols from .

Examples: All words appearing in the van Dale
All LATEX documents
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LATENT VARIABLE SYSTEMS

First principles models

A dynamical system with latent variables =

, the time-axis (= the set of relevant time instances).
, the signal space (= the variables that the model aims at).

, the latent variable space (= the auxiliary modeling variables).

: the full behavior

(= the pairs that the model declares
possible).
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THE MANIFEST BEHAVIOR

Call the elements of ‘manifest’ variables ,

those of ‘latent’ variables .

The latent variable system induces
the manifest system with manifest behavior

such that

In convenient equations for , the latent variables are ‘eliminated’.
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EXAMPLES

1. RLC - circuit

system
environment

RLC - circuit

!! Model the relation between and !!
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The circuit graph
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SYSTEM EQUATIONS

Introduce the following additional variables:
the voltage across and the current in each branch:

Constitutive equations (CE):

Kirchhoff’s voltage laws (KVL):

Kirchhoff’s current laws (KCL):
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Formalization as a latent variable system:

,
- manifest variables: the port voltage and current,
- latent variables: the branch voltages and currents,
all functions

that satisfy the CE’s, KCL, and KVL,
the functions that satisfy the ‘eliminated’ port
equations.
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RELATION BETWEEN and

After some calculations ‘elimination’, we obtain the port equations:

Case 1: .

Case 2: .

These are the exact relations between and !
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2. Input /state / output systems

,
all that satisfy these equations,

all (input / output)-pairs.
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3. Interconnected systems ’First principles’ models

Interconnected system

External variables manifest;
Internal variables latent.
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4. Grammars

A convenient way to specify a formal language, whose essence is
captured by latent variables, is through grammars.
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STATE SYSTEMS
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THE NOTION OF STATE

The latent variable system

is said to be a state system if

and

imply

denotes concatenation at , defined as

for
for
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In pictures:

time
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time

Concatenation
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This definition is the implementation of the idea:

The state at time , , contains all the information
(about !) that is relevant for the future behavior.

The state = the memory (nothing ‘minimal’ implied!).

The past and the future are ‘independent’,
conditioned on (given) the present state.
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Examples of state systems:

1. Discrete-time systems.

A latent variable system described by a difference equation that
is first order in the latent variable , and zero-th order in the
manifest variable :
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2. Continuous-time systems.

A latent variable system described by a differential equation that is
first order in the latent variable , and zero-th order in the manifest
variable :

In particular, the ubiquitous
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3. Automata.

4. Trellis diagrams.

5. QM:

the ‘wave function’;
the ‘probability’ density of the particle’s position.
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For discrete time state systems

Theorem: The ‘complete’ latent variable system

is a state system if and only if admits a representation as
a difference equation that is first order in the latent variable ,
and zero-th order in the manifest variable :
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LINEAR DIFFERENTIAL SYSTEMS
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We now introduce the systems

that are

1. linear , meaning
;

2. time-invariant , meaning
,

where denotes the backwards shift;

3. differential , meaning
consists of the solutions of a system of differential equations.
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In vector/matrix notation:

...
...

...
...

Yields

with
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Combined with the polynomial matrix

we obtain the short notation

Including latent variables

with .
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Examples:

1. RLC-circuit: Case 1: .

Then the relation between and is

We have 1;
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2. Linear systems:

The ubiquitous

with and, perhaps, proper.

The ubiquitous

.

The descriptor systems
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For simplicity of exposition, we assume smooth solutions.

Whence, defines the system with
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NOTATION

all such systems (with any - finite - number of variables)
with variables

(no ambiguity regarding )

The theory (representations, elimination, controllability,
observability, algorithms, control, etc.) of is very complete.
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STATE REPRESENTATIONS
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DESCRIPTOR SYSTEMS

Theorem: The latent variable system with
is a state system if and only if admits

a kernel representation that is first order in the latent variable ,
and zero-th order in the manifest variable .

In other words, iff there exist matrices such that
this kernel representation takes the form of a descriptor system:
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MINIMALITY of STATE REPRESENTATIONS

We can consider two types of minimality:

1. Minimality of the number of equations
2. Minimality of the number of state variables

We discuss mainly the second one.

Definition: The state system with
is said to be state-minimal if, whenever with

is another state system with the same manifest
behavior, there holds

.
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One more definition...

is said to be trim if, for all w , there exists
such that w . The state system with

is said to be state-trim if, for all x , there
exists such that x .

Theorem:
The state system with is
state-minimal iff it is state trim and the state is ‘observable’ from
.

Observability : can be deduced from
I.e., such that .

State-minimality the combination of trimness and observability.
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Notes:

1. State isomorphism theorem. Assume and
, both state-minimal,

same manifest behavior
there exists a nonsingular such that

and

2. The manifest behavior is controllable iff a state-minimal state
representation is state-controllable (defined in the obvious
way).

3. algorithms on in a descriptor representation to verify
its state-minimality, its equation minimality, both combined.
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4. and are
two minimal (state- and equation-minimal) representations of the
same manifest behavior iff there exist nonsingular matrices

such that

All ‘classical’ results remain valid, except, (fortunately!)
the celebrated (non-)equivalence:
state-minimality (state-observability + state-controllability).

Non-controllable systems are very ‘real’ and they allow
state-minimal (non-controllable) state representation.
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STATE CONSTRUCTION
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Given a representation of the manifest behavior,
find a (state-minimal) state representation for it.

Most logical : latent variable representation state representation.
However, it is most convenient to discuss kernel representations first.

Let . The map is called a state map for
if the full behavior

and

satisfies the axiom of state. Minimal state map: obvious.

In a state-minimal representation, is always determined by a state
map (because of observability), whence state maps exist.
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CONSTRUCTION of STATE MAPS

Define the ‘shift-and-cut’ operator on as follows:

Extend-able in the obvious term-by-term way to .

Repeated use of the cut-and-shift on yields the
‘stack’ operator , defined by

...

45



FROM KERNEL REPRESENTATION to STATE MAP

There is a construction (elegant in its simplicity) of a state map in
terms of the cut-and-shift and stack operators!

Theorem: Let be a kernel representation of .
Then is a state map for .

The resulting state representation

need not be minimal. It is trivially state-observable, but it may not be
state-trim. Using Gröbner basis techniques it can be trimmed,
leading to a minimal state representation.
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SINGLE INPUT - SINGLE OUTPUT SYSTEMS

Apply this to

with

The cut-and-shift and stack operators yield the polynomial matrix

...
...
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It follows that is a state map, in fact, a state minimal one,
even if the system is not controllable, i.e., if and have a common
factor.

Minimal state map basis for span of the rows of modulo .

Number the rows of in reverse order. A small calculation shows
that this choice of the state variables leads to the so-called
observer canonical form , the i/s/o representation

...
...
...

...
...

...

48



Another immediate choice is to pick linear combinations of the rows
of so that the resulting state map matrix takes the form

...
...

The ’s are obtained from the polynomial defined by the
equation

modulo

Then

...
...
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This leads to the observable canonical form , the i/s/o
representation

...
...

...
... ...

Image representations + state construction

controller canonical form and controllable canonical form .
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Notes:

Basic idea of algorithms:
from latent variable representation directly to state model.
This complements the existent algorithms

transfer function i / s / o representation;
impulse response i / s / o representation.

Our state construction is easily extended to state / input
construction.
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Examples of useful special (minimal) state representations:
i/s/o representation:

output nulling representation:

driving variable representation:

Immediately deduced from descriptor representation:
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BALANCED REALIZATIONS
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FROM KERNEL REPR. TO BALANCED REAL.

For simplicity, we discuss only single input - single output systems

assumed controllable, i.e., with co-prime,
,

and stable, i.e., Hurwitz.

Problem: Pass from to a balanced state representation
using polynomial algebra.
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Computation of the controllability and observability Gramians
(two-variable polynomials):

where is given by the Bezout equation
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Factor as

with Solve for , the equations

Then the matrices with entries define a balanced
realization. The balanced reduction is obvious from here.
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Open Problem:

Algorithm

AAK version of this: cfr. Fuhrmann’s book.

Goal: algorithms passing from image, latent variable representation
to balanced realization.

57



STATE for PDE’s
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BEHAVIORS of n-D SYSTEMS

A system :=

the set of independent variables
time, space, time and space

the set of dependent variables (= where the variables take on
their values), signal space, space of field variables,

: the behavior = the admissible trajectories
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for a trajectory we thus have:

: the model allows the trajectory
: the model forbids the trajectory

In this section, (‘n-D systems’)

often, , independent variables ,
solutions of a system of constant coefficient

linear PDE’s.

’Linear distributed differential systems’.
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n-D LINEAR DIFFERENTIAL SYSTEMS

the solutions of a linear constant coefficient system of PDE’s.

Let and consider

Define
holds

mainly for convenience.
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Example: Maxwell’s equations

(time and space),

(electric field, magnetic field, current density, charge density),
,

set of solutions to these PDE’s.
Note: 10 variables, 8 equations! free variables.
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Maxwell’s equation for the electrical variables (with ’eliminated’):
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MARKOVIAN n-D SYSTEMS

What is the notion of state for such systems?
What does ‘Markov’ mean?

is said to be Markovian if for all nice partitions of
there holds:

and

( := ’concatenation’ at ).
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A nice partition
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The first solution
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The second solution
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The concatenated solution
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CONJECTURE

is Markovian if and only if

with first order, i.e.,

“If”-part is clear; “only if”-part is the problem.

Example: Maxwell’s equations, induces state representation of
electrical behavior. Not observable, thou.
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CONCLUDING REMARKS

A system a manifest behavior

First principles models systems with latent variables

State systems: latent variable systems in which the state ’splits’
the past and the future

State construction: for linear differential systems via
cut-and-shift map and Gröbner basis algorithms

Balanced reduction via polynomial algebra

Conjecture for PDE’s: Markovian first order
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Thank you!
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